Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.651
Filtrar
1.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589411

RESUMO

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Plasticidade Celular/genética , Multiômica , Evolução Clonal/genética
2.
Genome Biol ; 25(1): 65, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459554

RESUMO

BACKGROUND: Tumors are able to acquire new capabilities, including traits such as drug resistance and metastasis that are associated with unfavorable clinical outcomes. Single-cell technologies have made it possible to study both mutational and transcriptomic profiles, but as most studies have been conducted on model systems, little is known about cancer evolution in human patients. Hence, a better understanding of cancer evolution could have important implications for treatment strategies. RESULTS: Here, we analyze cancer evolution and clonal selection by jointly considering mutational and transcriptomic profiles of single cells acquired from tumor biopsies from 49 lung cancer samples and 51 samples with chronic myeloid leukemia. Comparing the two profiles, we find that each clone is associated with a preferred transcriptional state. For metastasis and drug resistance, we find that the number of mutations affecting related genes increases as the clone evolves, while changes in gene expression profiles are limited. Surprisingly, we find that mutations affecting ligand-receptor interactions with the tumor microenvironment frequently emerge as clones acquire drug resistance. CONCLUSIONS: Our results show that lung cancer and chronic myeloid leukemia maintain a high clonal and transcriptional diversity, and we find little evidence in favor of clonal sweeps. This suggests that for these cancers selection based solely on growth rate is unlikely to be the dominating driving force during cancer evolution.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Neoplasias Pulmonares , Humanos , Evolução Clonal , Mutação , Neoplasias Pulmonares/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Microambiente Tumoral
4.
Front Immunol ; 15: 1354130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333211

RESUMO

VEXAS syndrome is an acquired autoinflammatory disease characterized in most cases by cytopenias and macrocytic anemia. Dyshematopoiesis is a frequent finding in chronic inflammatory conditions and therefore, cytopenias are not easily classified in VEXAS patients. Here we report a series of 7 patients affected by VEXAS associated cytopenias, treated at our center. The use of NGS, together with morphological assays, integrated with the WHO 2022 criteria, allowed to identify three subsets of VEXAS associated cytopenias: ICUS (idiopathic cytopenia of uncertain significance), CCUS (clonal cytopenia of uncertain significance) at high risk of clonal evolution, and MDS. This approach could help to better understand the nature of VEXAS associated cytopenias and to guide the use of specific targeted treatments in order to achieve long lasting responses.


Assuntos
60427 , Síndromes Mielodisplásicas , Dermatopatias Genéticas , Humanos , Síndromes Mielodisplásicas/terapia , Evolução Clonal , Organização Mundial da Saúde
5.
STAR Protoc ; 5(1): 102809, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180835

RESUMO

Here, we present a protocol to perform barcode decay lineage tracing followed by single-cell transcriptome analysis (BdLT-Seq). We describe steps for BdLT-Seq experimental design, building barcoded episome reporters, performing episome transfection, and barcode retrieval. We then describe procedures for sequencing library construction while providing options for sample multiplexing and data analysis. This BdLT-Seq technique enables the assessment of clonal evolution in a directional manner while preserving isogeneity, thus allowing the comparison of non-genetic molecular features between isogenic cell lineages. For complete details on the use and execution of this protocol, please refer to Shlyakhtina et al. (2023).1.


Assuntos
Evolução Clonal , Padrões de Herança , Linhagem da Célula/genética , Clonagem Molecular , Análise de Dados
6.
Hematol Oncol Clin North Am ; 38(2): 461-476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195308

RESUMO

Multiple myeloma is characterized by a highly heterogeneous disease distribution within the bone marrow-containing skeletal system. In this review, we introduce the molecular mechanisms underlying clonal heterogeneity and the spatio-temporal evolution of myeloma. We discuss the clinical impact of clonal heterogeneity, which is thought to be one of the biggest obstacles to overcome therapy resistance and to achieve cure.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Medula Óssea , Evolução Clonal/genética
7.
Theory Biosci ; 143(1): 63-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38289469

RESUMO

Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Evolução Molecular , Adaptação Fisiológica , Evolução Clonal , Evolução Biológica , Fenótipo
9.
AIDS ; 38(4): 487-495, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976039

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with older age, inflammation and with risk of coronary artery disease (CAD). We aimed to characterize the burden of CHIP, and to explore the association between CHIP, inflammatory markers, and CAD in older persons with HIV (PWH). METHODS: From the Copenhagen Comorbidity in HIV Infection (COCOMO) study, we included 190 individuals older than 55 years of age. We defined CHIP as variant allele fraction at least 2%. CAD was categorized according to the most severe coronary artery lesion on coronary computed tomography (CT) angiography as no coronary atherosclerosis; any atherosclerosis defined as at least 1% stenosis and obstructive CAD defined as at least 50% stenosis. RESULTS: In the entire population (median age 66 years, 87% men), we identified a total of 62 mutations distributed among 49 (26%) participants. The three most mutated genes were DNMT3A , TET2 , and ASXL1 , accounting for 49, 25, and 16% of mutations, respectively. Age and sex were the only variables associated with CHIP. IL-1ß, IL-1Ra, IL-2, IL-6, IL-10, soluble CD14, soluble CD163 and TNF-α were not associated with CHIP, and CHIP was not associated with any atherosclerosis or with obstructive CAD in adjusted analyses. CONCLUSION: In older, well treated, Scandinavian PWH, more than one in four had at least one CHIP mutation. We did not find evidence of an association between CHIP and inflammatory markers or between CHIP and CAD. CHIP is an unlikely underlying mechanism to explain the association between inflammation and CAD in treated HIV disease.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infecções por HIV , Masculino , Humanos , Idoso , Idoso de 80 Anos ou mais , Feminino , Hematopoiese Clonal , Infecções por HIV/complicações , Constrição Patológica , Hematopoese/genética , Evolução Clonal , Doença da Artéria Coronariana/genética , Mutação , Inflamação
10.
Artigo em Inglês | MEDLINE | ID: mdl-38052482

RESUMO

The transition from a single, initiated cell to a full-blown malignant tumor involves significant genomic evolution. Exposure to carcinogens-whether directly mutagenic or not-can drive progression toward malignancy, as can stochastic acquisition of cancer-promoting genetic events. Mouse models using both carcinogens and germline genetic manipulations have enabled precise inquiry into the evolutionary dynamics that take place as a tumor progresses from benign to malignant to metastatic stages. Tumor progression is characterized by changes in somatic point mutations and copy-number alterations, even though any single tumor can itself have a high or low burden of genomic alterations. Further, lineage-tracing, single-cell analyses and CRISPR barcoding have revealed the distinct clonal dynamics within benign and malignant tumors. Application of these tools in a range of mouse models can shed unique light on the patterns of clonal evolution that take place in both mouse and human tumors.


Assuntos
Carcinógenos Ambientais , Humanos , Animais , Camundongos , Processos Neoplásicos , Genômica , Mutação , Evolução Clonal , Modelos Animais de Doenças
11.
Blood ; 143(4): 320-335, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37801708

RESUMO

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas de Ligação a RNA , Humanos , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Recidiva , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo
12.
Leukemia ; 38(3): 557-569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017105

RESUMO

Chronic lymphocytic leukemia (CLL) is a B-cell neoplasm with a heterogeneous clinical behavior. In 5-10% of patients the disease transforms into a diffuse large-B cell lymphoma known as Richter transformation (RT), which is associated with dismal prognosis. Here, we aimed to establish patient-derived xenograft (PDX) models to study the molecular features and evolution of CLL and RT. We generated two PDXs by injecting CLL (PDX12) and RT (PDX19) cells into immunocompromised NSG mice. Both PDXs were morphologically and phenotypically similar to RT. Whole-genome sequencing analysis at different time points of the PDX evolution revealed a genomic landscape similar to RT tumors from both patients and uncovered an unprecedented RT subclonal heterogeneity and clonal evolution during PDX generation. In PDX12, the transformed cells expanded from a very small subclone already present at the CLL stage. Transcriptomic analysis of PDXs showed a high oxidative phosphorylation (OXPHOS) and low B-cell receptor (BCR) signaling similar to the RT in the patients. IACS-010759, an OXPHOS inhibitor, reduced proliferation, and circumvented resistance to venetoclax. In summary, we have generated new RT-PDX models, one of them from CLL cells that mimicked the evolution of CLL to RT uncovering intrinsic features of RT cells of therapeutical value.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Xenoenxertos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Evolução Clonal/genética , Prognóstico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia
13.
Hematology Am Soc Hematol Educ Program ; 2023(1): 125-134, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066914

RESUMO

Progression to myelodysplastic syndromes (MDS) and acute myeloid leukemia is one of the most serious complications of the inherited bone marrow failure and MDS-predisposition syndromes. Given the lack of predictive markers, this risk can also be a source of great uncertainty and anxiety to patients and their providers alike. Recent data show that some acquired mutations may provide a window into this risk. While maladaptive mechanisms, such as monosomy 7, are associated with a high risk of leukemogenesis, mutations that offset the inherited defect (known as somatic genetic rescue) may attenuate this risk. Somatic mutations that are shared with age-acquired clonal hematopoiesis mutations also show syndrome-specific patterns that may provide additional data as to disease risk. This review focuses on recent progress in this area with an emphasis on the biological underpinnings and interpretation of these patterns for patient care decisions.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Medula Óssea , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Evolução Clonal/genética , Mutação , Progressão da Doença
15.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
17.
J Transl Med ; 21(1): 641, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726835

RESUMO

BACKGROUND: Nowadays, the incidence rate of advanced and metastatic prostate cancer at the first time of diagnosis grows higher in China yearly. At present, androgen deprivation therapy (ADT) is the primary treatment of advanced prostate cancer. However, after several years of ADT, most patients will ultimately progress to castration-resistant prostate cancer (CRPC). Previous studies mainly focus on Caucasian and very few on East Asian patients. METHODS: In this study, the pre- and post-ADT tumor samples were collected from five Chinese patients with advanced prostate cancer. The whole-exome sequencing, tumor heterogeneity, and clonal evolution pattern were analyzed. RESULTS: The results showed that the gene mutation pattern and heterogeneity changed significantly after androgen deprivation therapy. Tumor Mutational Burden (TMB) and Copy Number Alteration (CNA) were substantially reduced in the post-treatment group, but the Mutant-allele tumor heterogeneity (MATH), Socio-Demographic Index (SDI), Intratumor heterogeneity (ITH), and weighted Genome Instability Index (wGII) had no significant difference. According to the clone types and characteristics, the presence of main clones in five pre-and post-treatment samples, the clonal evolution pattern can be further classified into two sub-groups (the Homogeneous origin clonal model or the Heterogeneous origin clonal model). The Progression-free survival (PFS) of the patients with the "Homogeneous origin clonal model" was shorter than the "Heterogeneous origin clonal model". The longer PFS might relate to MUC7 and MUC5B mutations repaired. ZNF91 mutation might be responsible for resistance to ADT resistance. CONCLUSION: Our findings revealed potential genetic regulators to predict the castration resistance and provide insights into the castration resistance processes in advanced prostate cancer. The crosstalk between clonal evolution patterns and tumor microenvironment may also play a role in castration resistance. A multicenter-research including larger populations with different background are needed to confirm our conclusion in the future.


Assuntos
Evolução Clonal , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios , Androgênios , Evolução Clonal/genética , Neoplasias da Próstata/genética , Microambiente Tumoral , População do Leste Asiático , Neoplasias de Próstata Resistentes à Castração
18.
NPJ Syst Biol Appl ; 9(1): 41, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37684264

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative disease of early childhood that develops due to mutations in the genes of the RAS-signaling pathway. Next-generation high throughput sequencing (NGS) enables identification of various secondary molecular genetic events that can facilitate JMML progression and transformation into secondary acute myeloid leukemia (sAML). The methods of single-cell DNA sequencing (scDNA-seq) enable overcoming limitations of bulk NGS and exploring genetic heterogeneity at the level of individual cells, which can help in a better understanding of the mechanisms leading to JMML progression and provide an opportunity to evaluate the response of leukemia to therapy. In the present work, we applied a two-step droplet microfluidics approach to detect DNA alterations among thousands of single cells and to analyze clonal dynamics in two JMML patients with sAML transformation before and after hematopoietic stem cell transplantation (HSCT). At the time of diagnosis both of our patients harbored only "canonical" mutations in the RAS signaling pathway genes detected by targeted DNA sequencing. Analysis of samples from the time of transformation JMML to sAML revealed additional genetic events that are potential drivers for disease progression in both patients. ScDNA-seq was able to measure of chimerism level and detect a residual tumor clone in the second patient after HSCT (sensitivity of less than 0.1% tumor cells). The data obtained demonstrate the value of scDNA-seq to assess the clonal evolution of JMML to sAML, response to therapy and engraftment monitoring.


Assuntos
Leucemia Mielomonocítica Juvenil , Humanos , Pré-Escolar , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/terapia , Evolução Clonal , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética
19.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685874

RESUMO

In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.


Assuntos
Leucemia , Mitocôndrias , Humanos , Divisão Celular , Evolução Clonal , Células Clonais
20.
Front Immunol ; 14: 1243997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744361

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/metabolismo , Medula Óssea/metabolismo , Evolução Clonal/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...